279 research outputs found

    Theory for RNA folding, stretching, and melting including loops and salt

    Full text link
    Secondary structure formation of nucleic acids strongly depends on salt concentration and temperature. We develop a theory for RNA folding that correctly accounts for sequence effects, the entropic contributions associated with loop formation, and salt effects. Using an iterative expression for the partition function that neglects pseudoknots, we calculate folding free energies and minimum free energy configurations based on the experimentally derived base pairing free energies. The configurational entropy of loop formation is modeled by the asymptotic expression -c ln m, where m is the length of the loop and c the loop exponent, which is an adjustable constant. Salt effects enter in two ways: first, we derive salt induced modifications of the free energy parameters for describing base pairing and, second, we include the electrostatic free energy for loop formation. Both effects are modeled on the Debye-Hueckel level including counterion condensation. We validate our theory for two different RNA sequences: For tRNA-phe, the resultant heat capacity curves for thermal denaturation at various salt concentrations accurately reproduce experimental results. For the P5ab RNA hairpin, we derive the global phase diagram in the three-dimensional space spanned by temperature, stretching force, and salt concentration and obtain good agreement with the experimentally determined critical unfolding force. We show that for a proper description of RNA melting and stretching, both salt and loop entropy effects are needed.Comment: 12 pages, 9 figures, accepted for publication in Biophysical Journa

    Quantitative prediction of multivalent ligand–receptor binding affinities for influenza, cholera, and anthrax inhibition

    Get PDF
    Multivalency achieves strong, yet reversible binding by the simultaneous formation of multiple weak bonds. It is a key interaction principle in biology and promising for the synthesis of high-affinity inhibitors of pathogens. We present a molecular model for the binding affinity of synthetic multivalent ligands onto multivalent receptors consisting of n receptor units arranged on a regular polygon. Ligands consist of a geometrically matching rigid polygonal core to which monovalent ligand units are attached via flexible linker polymers, closely mimicking existing experimental designs. The calculated binding affinities quantitatively agree with experimental studies for cholera toxin (n = 5) and anthrax receptor (n = 7) and allow to predict optimal core size and optimal linker length. Maximal binding affinity is achieved for a core that matches the receptor size and for linkers that have an equilibrium end-to-end distance that is slightly longer than the geometric separation between ligand core and receptor sites. Linkers that are longer than optimal are greatly preferable compared to shorter linkers. The angular steric restriction between ligand unit and linker polymer is shown to be a key parameter. We construct an enhancement diagram that quantifies the multivalent binding affinity compared to monovalent ligands. We conclude that multivalent ligands against influenza viral hemagglutinin (n = 3), cholera toxin (n = 5), and anthrax receptor (n = 7) can outperform monovalent ligands only for a monovalent ligand affinity that exceeds a core-size dependent threshold value. Thus, multivalent drug design needs to balance core size, linker length, as well as monovalent ligand unit affinity

    Attraction of like-charged macroions in the strong-coupling limit

    Full text link
    Like-charged macroions attract each other as a result of strong electrostatic correlations in the presence of multivalent counterions or at low temperatures. We investigate the effective electrostatic interaction between i) two like-charged rods and ii) two like-charged spheres using the recently introduced strong-coupling theory, which becomes asymptotically exact in the limit of large coupling parameter (i.e. for large counterion valency, low temperature, or high surface charge density on macroions). Since we deal with curved surfaces, an additional parameter, referred to as Manning parameter, is introduced, which measures the ratio between the radius of curvature of macroions to the Gouy-Chapman length and controls the counterion-condensation process that directly affects the effective interactions. For sufficiently large Manning parameters (weakly-curved surfaces), we find a strong long-ranged attraction between two macroions that form a closely-packed bound state with small surface-to-surface separation of the order of the counterion diameter in agreement with recent simulations. For small Manning parameters (highly-curved surfaces), on the other hand, the equilibrium separation increases and the macroions unbind from each other as the confinement volume increases to infinity. This occurs via a continuous universal unbinding transition for two charged rods at a threshold Manning parameter of 2/3, while the transition is discontinuous for spheres because of a pronounced potential barrier at intermediate distances.Comment: 16 pages, 10 figure

    Plectoneme creation reduces the rotational friction of a polymer

    Full text link
    The torsional dynamics of a semiflexible polymer with a contour length LL larger than its persistence length L_p that is rotated at fixed frequency omega_0 at one end is studied by scaling arguments and hydrodynamic simulations. We find a non-equilibrium transition at a critical frequency omega_*: In the linear regime, omega_0 < omega_*, axial spinning is the dominant dissipation mode. In the non-linear regime, omega_0 > omega_*, the twist-dissipation mode involves the continuous creation of plectonemes close to the driven end and the rotational friction is substantially reduced

    Beyond Poisson-Boltzmann: Fluctuations and Correlations

    Full text link
    We formulate the non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point, and the effects of fluctuations and correlations are included by a loop-wise expansion around this saddle point. We show that the Poisson equation is obeyed at each order in the loop expansion and explicitly give the expansion of the Gibbs potential up to two loops. We then apply our formalism to the case of an impenetrable, charged wall, and obtain the fluctuation corrections to the electrostatic potential and counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. We also calculate effective interactions between charged particles, which reflect counter-ion correlation effects.Comment: 12 pages, 8 postscript figure

    Variational charge renormalization in charged systems

    Full text link
    We apply general variational techniques to the problem of the counterion distribution around highly charged objects where strong condensation of counterions takes place. Within a field-theoretic formulation using a fluctuating electrostatic potential, the concept of surface-charge renormalization is recovered within a simple one-parameter variational procedure. As a test, we reproduce the Poisson-Boltzmann surface potential for a single charge planar surface both in the weak-charge and strong-charge regime. We then apply our techniques to non-planar geometries where closed-form solutions of the non-linear Poisson-Boltzmann equation are not available. In the cylindrical case, the Manning charge renormalization result is obtained in the limit of vanishing salt concentration. However, for intermediate salt concentrations a slow crossover to the non-charge-renormalized regime (at high salt) is found with a quasi-power-law behavior which helps to understand conflicting experimental and theoretical results for the electrostatic persistence length of polyelectrolytes. In the spherical geometry charge renormalization is only found at intermediate salt concentrations

    Anisotropic Hydrodynamic Mean-Field Theory for Semiflexible Polymers under Tension

    Full text link
    We introduce an anisotropic mean-field approach for the dynamics of semiflexible polymers under intermediate tension, the force range where a chain is partially extended but not in the asymptotic regime of a nearly straight contour. The theory is designed to exactly reproduce the lowest order equilibrium averages of a stretched polymer, and treats the full complexity of the problem: the resulting dynamics include the coupled effects of long-range hydrodynamic interactions, backbone stiffness, and large-scale polymer contour fluctuations. Validated by Brownian hydrodynamics simulations and comparison to optical tweezer measurements on stretched DNA, the theory is highly accurate in the intermediate tension regime over a broad dynamical range, without the need for additional dynamic fitting parameters.Comment: 22 pages, 9 figures; revised version with additional calculations and experimental comparison; accepted for publication in Macromolecule

    The mean shape of transition and first-passage paths

    Get PDF
    We calculate the mean shape of transition paths and first-passage paths based on the one-dimensional Fokker-Planck equation in an arbitrary free energy landscape including a general inhomogeneous diffusivity profile. The transition path ensemble is the collection of all paths that do not revisit the start position xAx_A and that terminate when first reaching the final position xBx_B. In contrast, a first-passage path can revisit but not cross its start position xAx_A before it terminates at xBx_B. Our theoretical framework employs the forward and backward Fokker-Planck equations as well as first-passage, passage, last-passage and transition-path time distributions, for which we derive the defining integral equations. We show that the mean time at which the transition path ensemble visits an intermediate position xx is equivalent to the mean first-passage time of reaching the starting position xAx_A from xx without ever visiting xBx_B. The mean shape of first-passage paths is related to the mean shape of transition paths by a constant time shift. Since for large barrier height UU the mean first-passage time scales exponentially in UU while the mean transition path time scales linearly inversely in UU, the time shift between first-passage and transition path shapes is substantial. We present explicit examples of transition path shapes for linear and harmonic potentials and illustrate our findings by trajectories generated from Brownian dynamics simulations
    • …
    corecore